Share

LEAD INGOT กับ อุตสาหกรรม BATTERY

Last updated: 27 Nov 2025
235 Views

LEAD INGOT แท่งตะกั่ว กับ อุตสาหกรรม BATTERY 

แท่งตะกั่ว (lead ingot) ไม่ได้ใช้เป็นแบตเตอรี่โดยตรง แต่เป็นวัตถุดิบตั้งต้นในการผลิตแบตเตอรี่ตะกั่วกรด (lead-acid battery) ซึ่งใช้ในการสตาร์ทรถยนต์, ระบบสำรองไฟ (UPS), โซลาร์เซลล์, และรถยกไฟฟ้า โดยตะกั่วจะเป็นแผ่นธาตุบวกและแผ่นธาตุลบภายในแบตเตอรี่ ทำงานร่วมกับกรดซัลฟิวริกเพื่อเก็บและจ่ายพลังงานไฟฟ้า 
 
การใช้งานแบตเตอรี่ตะกั่วกรด (Lead-acid battery)
ยานยนต์: เป็นแบตเตอรี่ที่นิยมใช้ในรถยนต์มากที่สุดสำหรับการสตาร์ทเครื่องยนต์
ระบบสำรองไฟ (UPS): ใช้สำหรับสำรองไฟฟ้าให้กับอุปกรณ์ที่ต้องการพลังงานต่อเนื่อง เช่น คอมพิวเตอร์ หรือไฟฉุกเฉิน
โซลาร์เซลล์: ใช้ในการเก็บพลังงานจากแสงอาทิตย์เพื่อใช้ในภายหลัง
รถยกไฟฟ้า: แบตเตอรี่ตะกั่วกรดเป็นแหล่งพลังงานหลักสำหรับรถยกไฟฟ้า
อุปกรณ์ไฟฟ้าอื่นๆ: อุปกรณ์ไฟฟ้าที่ต้องการพลังงานแบบชาร์จได้ เช่น อุปกรณ์ทางการแพทย์ หรือระบบสัญญาณ 
 
ข้อควรรู้เพิ่มเติม
การชาร์จ: ควรใช้เครื่องชาร์จที่เหมาะสมกับชนิดของแบตเตอรี่ (เช่น แบตเตอรี่เจลต้องการเครื่องชาร์จเฉพาะ) และแรงดันไฟฟ้าที่เหมาะสม
การบำรุงรักษา: การดูแลรักษาแบตเตอรี่อย่างถูกวิธี เช่น การรักษาความสะอาด, การตรวจสอบระดับน้ำกลั่น (ในแบตเตอรี่แบบเติมน้ำ), และการหลีกเลี่ยงการคายประจุจนหมด จะช่วยยืดอายุการใช้งานได้
ความปลอดภัย: ควรหลีกเลี่ยงการใช้แบตเตอรี่ที่ไม่เข้าคู่กัน และตรวจสอบการต่อสายดินก่อนการใช้งาน 

----

แบตเตอรี่ตะกั่วกรด (Lead-acid battery) คือแบตเตอรี่แบบชาร์จได้ที่ใช้ตะกั่วและกรดซัลฟิวริกเป็นส่วนประกอบหลักในการเก็บและจ่ายพลังงาน โดยทำงานผ่านปฏิกิริยาเคมีที่สามารถย้อนกลับได้เมื่อทำการชาร์จ แบตเตอรี่ประเภทนี้เป็นที่นิยมอย่างแพร่หลายในรถยนต์, ระบบสำรองไฟ (UPS), และยานพาหนะไฟฟ้าขนาดเล็ก 
 
ส่วนประกอบหลัก
แผ่นธาตุ: ประกอบด้วยแผ่นธาตุบวก (ตะกั่วไดออกไซด์) และแผ่นธาตุลบ (ตะกั่วฟองน้ำ)
แผ่นกั้น: เป็นฉนวนป้องกันไม่ให้แผ่นธาตุบวกและลบสัมผัสกันสารละลายอิเล็กโทรไลต์: กรดซัลฟิวริก (กรดกำมะถัน) ที่ทำหน้าที่เป็นตัวกลางในการเกิดปฏิกิริยาเคมี  
การทำงาน
ขณะคายประจุ (ใช้งาน): แผ่นตะกั่วไดออกไซด์และตะกั่วฟองน้ำจะทำปฏิกิริยากับกรดซัลฟิวริก ทำให้เกิดตะกั่วซัลเฟตและน้ำ และปล่อยกระแสไฟฟ้าออกมา
ขณะชาร์จ: การส่งกระแสไฟฟ้าเข้าไปจะทำให้ตะกั่วซัลเฟตบนแผ่นธาตุทั้งสองกลับไปเป็นตะกั่วไดออกไซด์ (ขั้วบวก) และตะกั่วฟองน้ำ (ขั้วลบ) ตามเดิม พร้อมทั้งสร้างกรดซัลฟิวริกขึ้นใหม่ 
 
ประเภทที่พบได้บ่อย
แบบเติมน้ำกลั่น (Flooded Lead-Acid): ต้องมีการเติมน้ำกลั่นอย่างสม่ำเสมอ
แบบแห้ง (Sealed Lead-Acid - SLA): เป็นแบตเตอรี่แบบปิดผนึกสนิท (รวมถึงแบบ AGM และ Gel) ไม่ต้องเติมน้ำกลั่นและมีความปลอดภัยสูงกว่า 
 

---------

 แบตเตอรี่ตะกั่ว-กรด (อังกฤษ: leadacid battery) สร้างขึ้นในปี ค.ศ. 1859 โดยนักฟิสิกส์ชาวฝรั่งเศส กัสตง ปล็องเต แบตเตอรี่ชนิดนี้แบบชาร์จไฟได้ชนิดที่เก่าแก่ที่สุด ซึ่งมีอัตราส่วนพลังงานต่อน้ำหนักที่ต่ำมาก และอัตราส่วนพลังงานต่อปริมาณที่ต่ำ แต่มีอัตราส่วนกำลังงานต่อน้ำหนักค่อนข้างสูง นั่นหมายถึงมีความสามารถในการจ่ายกระแสไฟกระชากที่สูง ด้วยคุณสมบัติข้างต้นรวมกับราคาที่ค่อนข้างถูก ทำให้เป็นที่น่าสนใจสำหรับการใช้งานในเครื่องยนต์ที่ต้องใช้กระแสสูงสำหรับการจุดเครื่องยนต์

เนื่องจากแบตเตอรี่ชนืดนี้มีราคาไม่แพงเมื่อเทียบกับเทคโนโลยีสมัยใหม่ จึงใช้กันอย่างแพร่หลาย ถึงแม้ว่าในปัจจุบันการจ่ายไฟกระชากสูงไม่มีความจำเป็น และการออกแบบอื่น ๆ ก็ต้องการความหนาแน่นของพลังงานที่สูงขึ้น การออกแบบตะกั่วกรดในรูปแบบขนาดใหญ่มีการใช้กันอย่างแพร่หลายสำหรับการจัดเก็บในอุปกรณ์สำรองพลังงานในอาคารโทรศัพท์มือถือ, การดำเนินงานความพร้อมสูงเช่นโรงพยาบาล และระบบไฟฟ้าแบบ stand-alone สำหรับบทบาทเหล่านี้ รุ่นดัดแปลงของเซลล์มาตรฐานอาจจะนำมาใช้ในการปรับปรุงเวลาการเก็บรักษาและลดความต้องการการบำรุงรักษา แบตเตอรี่แบบ "เจลเซลล์" (อังกฤษ: Gel-cells) และแบบ "แก้วดูดซับ" (อังกฤษ: absorbed glass-mat) ถูกใช้ทั่วไปในบทบาทเหล่านี้, รวมกันแล้วแบตเตอรี่เหล่านี้จะถูกเรียกว่าเป็นแบบตะกั่ว-กรดกำกับด้วยวาล์ว (อังกฤษ: valve-regulated lead-acid (VRLA))

ยอดขายแบตเตอรี่ตะกั่ว-กรดอยู่ที่ 40-45% ของมูลค่าจากแบตเตอรี่ที่ขายทั่วโลก (ปี 1999, ไม่รวมจีนและรัสเซีย), มูลค่าตลาดของการผลิตอยู่ที่ประมาณ US$ 15 พันล้าน

---------

แบตเตอรี่ ตะกั่วกรด นั้นได้มีการเริ่มใช้งาน มาตั้งแต่เมื่อ ค.ศ 1859 และ ได้มีการพัฒนาประสิทธิภาพ อย่างต่อเนื่อง ตลอดระยะเวลา 160 ปี ที่ผ่านมา  แบตเตอรี่ตะกั่วกรด ยังคงมีการใช้งานต่อเนื่องไปอีกมากกว่า 50 ปี เป็นอย่างน้อย เนื่องจาก แบตเตอรี่ตะกั่วกรด ยังคงเป็นแบตเตอรี่ชนิดเดียวที่สามารถรีไซเคิล ได้มากกว่า 95%  โดยมีต้นทุนการผลิตถูกที่สุดในปัจจุบัน

 

ถ้าเราจะเข้าใจวิวัฒนาการของแบตเตอรี่ ตะกั่วกรด  เราต้องเริ่มจากทำความเข้าใจในองค์ประกอบหลัก ๆ ของแบตเตอรี่ ตะกั่วกรด กันก่อน โดย แบตเตอรี่ ตะกั่วกรดนั้นมีองค์ประกอบสำคัญ อยู่ 3 ส่วน หลัก ๆ ได้แก่


แผ่นธาตุ (Plate)  ซึ่งประกอบด้วย แผ่นธาตุบวก (Lead Oxide )และ แผ่นธาตุลบ (Lead )
แผ่นกั้น  (Separator) เป็นแผ่นฉนวนป้องกันระหว่างแผ่นธาตุบวก และ ลบ มาชนกัน
น้ำกรดกำมะถัน (Electrolyte) เป็นสารที่ช่วยให้เกิดปฏิกิริยาเคมี ระหว่าง แผ่นธาตุบวก และ แผ่นธาตุลบ  ทำให้เกิดปฏิกิริยาเคมีไฟฟ้า
ซี่งวิวัฒนาการของแบตเตอรี่ตะกั่วกรดตลอดระยะเวลา 160 ปี ก็มีการพัฒนาใน 3 ส่วนหลัก ๆ นี้ เพื่อทำให้ได้แบตเตอรี่ตะกั่วกรดไว้ใช้งานในอุตสาหกรรมต่าง ๆ ได้แก่ รถยนต์  , ระบบไฟฟ้าสำรอง , รถไฟฟ้า , ระบบโทรคมนาคม , รถไฟ , เรือดำน้ำ และ อื่น ๆ มากมาย ที่อยู่ในชีวิตประจำวันของเรา

สำหรับอุตสาหกรรมรถยนต์นั้น เรามีการใช้แบตเตอรี่ตะกั่วกรด โดยมีวัตถุประสงค์หลัก เพื่อสตาร์ทเครื่องยนต์   ซึ่งมีวิวัฒนาการ เป็นลำดับดังนี้

 ยุคแรกเริ่ม ของแบตเตอรี่ตะกั่วกรด
ยุคแรกเริ่ม แบตเตอรี่ตะกั่วกรด เป็นแบตเตอรี่ประเภทเติมน้ำกรด ก่อนใช้งาน ( Conventional Battery )  แบตเตอรี่ประเภทนี้ จะมีการใช้แผ่นธาตุ (Plate)   ที่ใช้โครงแผ่นธาตุ (Grid ) ผลิตจากโลหะผสม ที่ได้จาก ตะกั่ว (Lead ) + แร่พลวง (Antimony) + ดีบุก (Tin) ทั้งแผ่นธาตุบวก และ ลบ  แบตเตอรี่ชนิดนี้แผ่นธาตุจะผลิตจากกระบวนการหล่อในแม่พิมพ์ (Casting) ทำให้ได้แผ่นธาตุที่มีความหนา และ มีน้ำหนักมาก 

โดยมีข้อเสีย คือ เมื่อเวลาใช้งาน จะเกิดปฏิกิริยาเคมีไฟฟ้า ที่ทำแบตเตอรี่เกิดการความร้อน (Thermal Run Aways) ได้ง่าย  และ มีการสูญเสียไอน้ำกรด (Gassing )  มาก ทำให้เวลาใช้งาน แบตเตอรี่จะต้องการเติมน้ำกลั่นบ่อยครั้งเช่นทุก ๆ เดือน หรือ ทุกๆ สัปดาห์  ขึ้นอยู่กับการใช้งาน  และ ยังเป็นต้นเหตุทำให้เกิดการกัดกร่อนของรถยนต์ เนื่องจากน้ำกรดล้น และ ระเหยออกมากัดกร่อนตัวถังรถยนต์จนเป็นสนิม

 
ยุคของแบตเตอรี่ Low Maintenance
ต่อมาเมื่อผู้ใช้งาน มีความต้องการแบตเตอรี่ที่มีประสิทธิภาพที่ดีมากขึ้น และ ลดการสูญเสียไอน้ำกรด  จึงมีการพัฒนากระบวนการผลิตแผ่นธาตุ และ ปรับปรุงส่วนผสมของโลหะที่ใช้ทำโครงแผ่นธาตุ ลดการใช้พลวงลง เรียกโครงแผ่นธาตุแบบนี้ว่า Low Antimony Grid   ทำให้ได้แบตเตอรี่ตะกั่วกรด ที่มีการสูญเสียไอน้ำกรดระหว่างใช้งานน้อยลง  ผู้ผลิตแบตเตอรี่จึงเรียกแบตเตอรี่ประเภทนี้ว่า  Low Maintenance Battery (แบตเตอรี่ บำรุงรักษาน้อย)

ข้อดีของ Low Maintenance Battery
แบตเตอรี่เกิดความร้อนน้อยลง (ลดปัญหา Thermal Run Away)
แบตเตอรี่สูญเสียไอน้ำน้อยลง (ลดการเกิด Gassing)
ทำให้ยืดระยะเวลาในการเติมน้ำกลั่นได้นานขึ้น
 
ยุคของแบตเตอรี่ไฮบริด (Hybrid Battery)
และยุคต่อมา ผู้ผลิตแบตเตอรี่มีความต้องการในการพัฒนากระบวนการผลิตให้เร็วมากยิ่งขึ้น และผู้ขายไม่ต้องการเติมน้ำกรดและชาร์จก่อนขาย  ทำให้เกิดการพัฒนาแบตเตอรี่ โดยการใช้โครงแผ่นธาตุบวก แบบ Low Antimony  และโครงแผ่นธาตุลบที่ใช้แร่แคลเซียม(Lead Calcium Alloy)  เป็นส่วนผสมแทนแร่พลวง ผลที่ได้คือ แบตเตอรี่ชนิดไฮบริด (Hybrid Battery)

ข้อดีของแบตเตอรี่ไฮบริด (Hybrid Battery)
แบตเตอรี่มีเก็บประจุไฟฟ้าได้นานขึ้น (Low Self Discharge )
แบตเตอรี่สูญเสียไอน้ำน้อยลง (ลดการเกิด Gassing)
แบตเตอรี่เกิดความร้อนน้อยลง (ลดการเกิด Thermal Run Away)
ผู้ผลิตสามารถเติมน้ำกรดจากโรงงาน ได้เลย ผู้ขายจึงไม่ต้องเติมน้ำกรดและชาร์จก่อนการขาย
 
ยุคของแบตเตอรี่ SMF (Seal Maintenance Free Battery)
ต่อมาผู้ผลิตแบตเตอรี่ต้องการผลิตแบตเตอรี่ให้มีประสิทธิภาพสูงมากขึ้น และ เร็วมากยิ่งขึ้น จึงได้ทำให้อุตสาหกรรมแบตเตอรี่ได้พัฒนากระบวนการผลิตโครงแผ่นธาตุแบบใหม่ โดย

เปลี่ยนกระบวนการผลิตจากการหล่อ เป็นการรีดแผ่น  (Expansion Grid)
เปลี่ยนส่วนผสมของโลหะจากพลวงเป็น แคลเซียม และ ดีบุก  (Lead Calcium Tin  Alloy) ทั้งโครงแผ่นธาตุบวก และ ลบ
ผลที่เกิดขึ้นจากกระบวนการพัฒนานี้ ทำให้ได้แบตเตอรี่ ที่มีคุณสมบัติ

สูญเสียไอน้ำกรดน้อยมาก ( Ultra Low Gassing )
เกิดความร้อนน้อยมาก ( Ultra Low Thermal Run Away)
เก็บประจุไฟฟ้าได้นานมาก (Ultra Low Self Discharge)
จึงทำให้ผู้ผลิตแบตเตอรี่สามารถผลิตแบตเตอรี่ที่ไม่ต้องเติมน้ำกลั่นตลอดอายุการใช้งาน  โดยการออกแบบฝาแบตเตอรี่ แบบปิดสนิท ซึ่งเรียกว่า SMF Battery (Seal Maintenance Free Battery)

แต่ในปัจจุบันค่ายรถยนต์ต่างๆ มีการพัฒนารถยนต์ที่ลดการเกิดมลพิษจากไอเสียรถยนต์ ทำให้แบตเตอรี่จึงต้องมีการพัฒนาให้รองรับรถยนต์ ที่มีระบบไดชาร์จอัฉริยะ  (Alternator Management System) และระบบ ISS  (Intelligent Start Stop System)
 
สรุป
จากที่อธิบายมาทั้งหมดนี้ เป็นวิวัฒนาการของแบตเตอรี่ตะกั่วกรด โดยมุ่งไปที่การพัฒนาเพียงส่วนของโครงแผ่นธาตุ  เพียงอย่างเดียว ทำให้แบตเตอรี่พัฒนาจากยุคต้องเติมน้ำกรดและชาร์จก่อนใช้งาน (Conventional)  มาสู่ยุคแบตเตอรี่ไม่ต้องเติมน้ำกรด และ น้ำกลั่นตลอดอายุใช้งาน (SMF) 

------

แบตเตอรี่ที่ใช้ในรถยนต์ แบ่งออกเป็น 2ชนิด ได้แก่

1.แบเตอรี่แบบเปียก จะแบ่งย่อยอีกเป็น 2 แบบ คือ

   1.1.แบบที่ต้องเติมน้ำกลั่นบ่อยๆ (ประมาณสัปดาห์ละ 1 คั้ง) มีอายุการใช้งานประมาณ 1.5-2 ปี แต่ถ้าดูแลรักษาดีอาจใช้งานได้ถึง 3 ปี

   1.2.แบบที่ไม่ต้องดูแลน้ำกลั่น (Maintenance Free) โดยความเป็นจริงที่ต้องเติมน้ำกลั่น แต่ระยะเวลาอาจนานกว่า

2.แบตเตอรี่แบบแห้ง มีอายุการใช้งานประมาณ 5 ปีขึ้นไป 

---------------

โครงสร้างของแบตเตอรี่ ประกอบไปด้วย
 

1.       ฐานและเปลือกหม้อแบตเตอรี่

2.       แผ่นธาตุบวกและแผ่นธาตุลบ

3.       แผ่นกั้นและใยแก้ว

4.       สะพานรวมแผ่นธาตุ

5.       ขั้วต่อเซล (บวกขลบ)

6.       ฝาครอบปิดแผ่นเซล

7.       ขั้วบวก

8.       ขั้วลบ

9.       ฝาจุกตรวจขเติมน้ำกลั่น

10.     น้ำยา (น้ำกรดแบตเตอรี่)

 
ข้อควรระวัง

        การถอด และ ต่อพ่วงแบตเตอรี่จะต้องปฏิบัติอย่างถูกต้อง มิฉะนั้นอาจจะทำให้แบตเตอรี่ช็อต ระเบิด และเกิดความเสียหาย กับอุปกรณ์ต่างๆภายในรถได้

       การถอดแบตเตอรี่ จะต้องถอดขั้วลบออกก่อน แล้วจึงถอดขั้วบวกออกภายหลัง

       การใส่แบตเตอรี่ จะต้องใส่ขั้วบวกก่อนแล้วขันให้แน่นแล้วจึงใส่ขั้วลบแล้วขันให้แน่นภายหลัง

การต่อพ่วงแบตเตอรี่รถยนต์

       กรณีที่ไฟอ่อน หรือไฟหมด ต้องนำรถยนต์ที่มีไฟเต็มต่อสายพ่วงบวกเข้าขั้วบวกแบตเตอรี่ กับขั้วบวกแบตเตอรี่รถยนต์ คันที่ไฟอ่อน แล้วนำสายพ่วงลบต่อขั้วลบแบตเตอรี่ของรถยนต์ คันที่ไฟเต็มเข้ากับแชสซีส์ หรือตัวถังของรถยนต์ที่ไฟอ่อน สตาร์ทเครื่องยนต์ตัวรถยนต์ คันที่ไฟเสีย เร่งเครื่องประมาณ 1,000-2,000 รอบ /นาที แล้วจึงสตาร์ทรถยนต์คันที่แบตเตอรี่ไฟอ่อน หลังจากเครื่องยนต์สตาร์ทติดแล้ว ให้นำสายพ่วงออกโดยย้อนลำดับการเชื่อมต่อ

หมายเหตุ :  รถที่จะนำมาพ่วงสตาร์ทจะต้องมีไฟแบตเตอรี่เพียงพอ และจะต้องมีค่าแรงเคลื่อน โวลต์ (V)ที่เท่ากัน
--------------


Related Content
「Silicon 2026 – 关键玩家,关键价格:认识金属硅与全球市场机制 —— SO OK Trading」
金属硅:推动全球产业的重要原材料 金属硅是驱动全球产业的关键原材料,广泛应用于铝合金、化工产品、电子和太阳能电池。其主要来源是石英和石英岩,通过电弧炉冶炼可获得98–99%纯度的硅。
14 Jan 2026
“黄金价格持续飙升,是否要在宇宙才会停? BY SO OK TRADING”
2026年初黄金价格分析 截至2026年1月5日,黄金价格约为4,300–4,400美元/盎司,创下历史新高。这一走势延续了2025年全年强劲的上涨趋势。2026年的前景仍受到全球经济不确定性、贸易摩擦、国际贸易政策、美联储降息预期以及各国央行持续购金的支撑。 黄金价格概况(2026年初) - 最新价格(2026年1月5日): 4,400–4,450 USD/oz - 2025年走势: 黄金全年收于历史新高,反映了投资者与央行的强劲买盘 - 市场定位: 黄金不仅被视为短期抗通胀工具,更是全球投资组合中的战略性配置资产 影响黄金价格的关键因素 - 美国货币政策(美联储): 市场预期2026年将降息,推动金价上涨 - 通胀与全球经济: 对衰退与通胀的担忧促使投资者增持黄金作为避险资产 - 全球央行: 多国继续增加黄金储备,以分散美元风险 - 地缘政治风险: 战争、国际紧张局势与政治不确定性持续支撑金价 2026年走势展望 - 基准区间: 预计金价在 4,300–5,500 USD/oz 之间运行 → 突破5,000 USD/oz的可能性很高 - 上涨潜力: 若美联储快速降息或全球经济显著放缓,金价可能突破 5,500 USD/oz - 下行风险: 若全球经济迅速复苏且利率维持高位,金价可能回调至 ~4,000 USD/oz(概率较低,目前仍处于上升趋势) 投资者建议 - 短期: 密切关注美联储会议、各国经济政策、中国资源出口限制、去美元化趋势及国际贸易政策 - 中长期: 黄金仍是避险资产,适合用于投资组合的风险分散 → 价格有望继续上涨 结论 2026年黄金价格仍处于历史高位,整体趋势 维持上升。尽管短期可能出现回调,但在货币宽松、全球经济不确定性与央行购金的推动下,金价有望继续走高。
6 Jan 2026
This website uses cookies for best user experience, to find out more you can go to our Privacy Policy and Cookies Policy
Compare product
0/4
Remove all
Compare
Powered By MakeWebEasy Logo MakeWebEasy