共有

LEAD INGOT กับ อุตสาหกรรม BATTERY

Last updated: 27 Nov 2025
245 Views

LEAD INGOT แท่งตะกั่ว กับ อุตสาหกรรม BATTERY 

แท่งตะกั่ว (lead ingot) ไม่ได้ใช้เป็นแบตเตอรี่โดยตรง แต่เป็นวัตถุดิบตั้งต้นในการผลิตแบตเตอรี่ตะกั่วกรด (lead-acid battery) ซึ่งใช้ในการสตาร์ทรถยนต์, ระบบสำรองไฟ (UPS), โซลาร์เซลล์, และรถยกไฟฟ้า โดยตะกั่วจะเป็นแผ่นธาตุบวกและแผ่นธาตุลบภายในแบตเตอรี่ ทำงานร่วมกับกรดซัลฟิวริกเพื่อเก็บและจ่ายพลังงานไฟฟ้า 
 
การใช้งานแบตเตอรี่ตะกั่วกรด (Lead-acid battery)
ยานยนต์: เป็นแบตเตอรี่ที่นิยมใช้ในรถยนต์มากที่สุดสำหรับการสตาร์ทเครื่องยนต์
ระบบสำรองไฟ (UPS): ใช้สำหรับสำรองไฟฟ้าให้กับอุปกรณ์ที่ต้องการพลังงานต่อเนื่อง เช่น คอมพิวเตอร์ หรือไฟฉุกเฉิน
โซลาร์เซลล์: ใช้ในการเก็บพลังงานจากแสงอาทิตย์เพื่อใช้ในภายหลัง
รถยกไฟฟ้า: แบตเตอรี่ตะกั่วกรดเป็นแหล่งพลังงานหลักสำหรับรถยกไฟฟ้า
อุปกรณ์ไฟฟ้าอื่นๆ: อุปกรณ์ไฟฟ้าที่ต้องการพลังงานแบบชาร์จได้ เช่น อุปกรณ์ทางการแพทย์ หรือระบบสัญญาณ 
 
ข้อควรรู้เพิ่มเติม
การชาร์จ: ควรใช้เครื่องชาร์จที่เหมาะสมกับชนิดของแบตเตอรี่ (เช่น แบตเตอรี่เจลต้องการเครื่องชาร์จเฉพาะ) และแรงดันไฟฟ้าที่เหมาะสม
การบำรุงรักษา: การดูแลรักษาแบตเตอรี่อย่างถูกวิธี เช่น การรักษาความสะอาด, การตรวจสอบระดับน้ำกลั่น (ในแบตเตอรี่แบบเติมน้ำ), และการหลีกเลี่ยงการคายประจุจนหมด จะช่วยยืดอายุการใช้งานได้
ความปลอดภัย: ควรหลีกเลี่ยงการใช้แบตเตอรี่ที่ไม่เข้าคู่กัน และตรวจสอบการต่อสายดินก่อนการใช้งาน 

----

แบตเตอรี่ตะกั่วกรด (Lead-acid battery) คือแบตเตอรี่แบบชาร์จได้ที่ใช้ตะกั่วและกรดซัลฟิวริกเป็นส่วนประกอบหลักในการเก็บและจ่ายพลังงาน โดยทำงานผ่านปฏิกิริยาเคมีที่สามารถย้อนกลับได้เมื่อทำการชาร์จ แบตเตอรี่ประเภทนี้เป็นที่นิยมอย่างแพร่หลายในรถยนต์, ระบบสำรองไฟ (UPS), และยานพาหนะไฟฟ้าขนาดเล็ก 
 
ส่วนประกอบหลัก
แผ่นธาตุ: ประกอบด้วยแผ่นธาตุบวก (ตะกั่วไดออกไซด์) และแผ่นธาตุลบ (ตะกั่วฟองน้ำ)
แผ่นกั้น: เป็นฉนวนป้องกันไม่ให้แผ่นธาตุบวกและลบสัมผัสกันสารละลายอิเล็กโทรไลต์: กรดซัลฟิวริก (กรดกำมะถัน) ที่ทำหน้าที่เป็นตัวกลางในการเกิดปฏิกิริยาเคมี  
การทำงาน
ขณะคายประจุ (ใช้งาน): แผ่นตะกั่วไดออกไซด์และตะกั่วฟองน้ำจะทำปฏิกิริยากับกรดซัลฟิวริก ทำให้เกิดตะกั่วซัลเฟตและน้ำ และปล่อยกระแสไฟฟ้าออกมา
ขณะชาร์จ: การส่งกระแสไฟฟ้าเข้าไปจะทำให้ตะกั่วซัลเฟตบนแผ่นธาตุทั้งสองกลับไปเป็นตะกั่วไดออกไซด์ (ขั้วบวก) และตะกั่วฟองน้ำ (ขั้วลบ) ตามเดิม พร้อมทั้งสร้างกรดซัลฟิวริกขึ้นใหม่ 
 
ประเภทที่พบได้บ่อย
แบบเติมน้ำกลั่น (Flooded Lead-Acid): ต้องมีการเติมน้ำกลั่นอย่างสม่ำเสมอ
แบบแห้ง (Sealed Lead-Acid - SLA): เป็นแบตเตอรี่แบบปิดผนึกสนิท (รวมถึงแบบ AGM และ Gel) ไม่ต้องเติมน้ำกลั่นและมีความปลอดภัยสูงกว่า 
 

---------

 แบตเตอรี่ตะกั่ว-กรด (อังกฤษ: leadacid battery) สร้างขึ้นในปี ค.ศ. 1859 โดยนักฟิสิกส์ชาวฝรั่งเศส กัสตง ปล็องเต แบตเตอรี่ชนิดนี้แบบชาร์จไฟได้ชนิดที่เก่าแก่ที่สุด ซึ่งมีอัตราส่วนพลังงานต่อน้ำหนักที่ต่ำมาก และอัตราส่วนพลังงานต่อปริมาณที่ต่ำ แต่มีอัตราส่วนกำลังงานต่อน้ำหนักค่อนข้างสูง นั่นหมายถึงมีความสามารถในการจ่ายกระแสไฟกระชากที่สูง ด้วยคุณสมบัติข้างต้นรวมกับราคาที่ค่อนข้างถูก ทำให้เป็นที่น่าสนใจสำหรับการใช้งานในเครื่องยนต์ที่ต้องใช้กระแสสูงสำหรับการจุดเครื่องยนต์

เนื่องจากแบตเตอรี่ชนืดนี้มีราคาไม่แพงเมื่อเทียบกับเทคโนโลยีสมัยใหม่ จึงใช้กันอย่างแพร่หลาย ถึงแม้ว่าในปัจจุบันการจ่ายไฟกระชากสูงไม่มีความจำเป็น และการออกแบบอื่น ๆ ก็ต้องการความหนาแน่นของพลังงานที่สูงขึ้น การออกแบบตะกั่วกรดในรูปแบบขนาดใหญ่มีการใช้กันอย่างแพร่หลายสำหรับการจัดเก็บในอุปกรณ์สำรองพลังงานในอาคารโทรศัพท์มือถือ, การดำเนินงานความพร้อมสูงเช่นโรงพยาบาล และระบบไฟฟ้าแบบ stand-alone สำหรับบทบาทเหล่านี้ รุ่นดัดแปลงของเซลล์มาตรฐานอาจจะนำมาใช้ในการปรับปรุงเวลาการเก็บรักษาและลดความต้องการการบำรุงรักษา แบตเตอรี่แบบ "เจลเซลล์" (อังกฤษ: Gel-cells) และแบบ "แก้วดูดซับ" (อังกฤษ: absorbed glass-mat) ถูกใช้ทั่วไปในบทบาทเหล่านี้, รวมกันแล้วแบตเตอรี่เหล่านี้จะถูกเรียกว่าเป็นแบบตะกั่ว-กรดกำกับด้วยวาล์ว (อังกฤษ: valve-regulated lead-acid (VRLA))

ยอดขายแบตเตอรี่ตะกั่ว-กรดอยู่ที่ 40-45% ของมูลค่าจากแบตเตอรี่ที่ขายทั่วโลก (ปี 1999, ไม่รวมจีนและรัสเซีย), มูลค่าตลาดของการผลิตอยู่ที่ประมาณ US$ 15 พันล้าน

---------

แบตเตอรี่ ตะกั่วกรด นั้นได้มีการเริ่มใช้งาน มาตั้งแต่เมื่อ ค.ศ 1859 และ ได้มีการพัฒนาประสิทธิภาพ อย่างต่อเนื่อง ตลอดระยะเวลา 160 ปี ที่ผ่านมา  แบตเตอรี่ตะกั่วกรด ยังคงมีการใช้งานต่อเนื่องไปอีกมากกว่า 50 ปี เป็นอย่างน้อย เนื่องจาก แบตเตอรี่ตะกั่วกรด ยังคงเป็นแบตเตอรี่ชนิดเดียวที่สามารถรีไซเคิล ได้มากกว่า 95%  โดยมีต้นทุนการผลิตถูกที่สุดในปัจจุบัน

 

ถ้าเราจะเข้าใจวิวัฒนาการของแบตเตอรี่ ตะกั่วกรด  เราต้องเริ่มจากทำความเข้าใจในองค์ประกอบหลัก ๆ ของแบตเตอรี่ ตะกั่วกรด กันก่อน โดย แบตเตอรี่ ตะกั่วกรดนั้นมีองค์ประกอบสำคัญ อยู่ 3 ส่วน หลัก ๆ ได้แก่


แผ่นธาตุ (Plate)  ซึ่งประกอบด้วย แผ่นธาตุบวก (Lead Oxide )และ แผ่นธาตุลบ (Lead )
แผ่นกั้น  (Separator) เป็นแผ่นฉนวนป้องกันระหว่างแผ่นธาตุบวก และ ลบ มาชนกัน
น้ำกรดกำมะถัน (Electrolyte) เป็นสารที่ช่วยให้เกิดปฏิกิริยาเคมี ระหว่าง แผ่นธาตุบวก และ แผ่นธาตุลบ  ทำให้เกิดปฏิกิริยาเคมีไฟฟ้า
ซี่งวิวัฒนาการของแบตเตอรี่ตะกั่วกรดตลอดระยะเวลา 160 ปี ก็มีการพัฒนาใน 3 ส่วนหลัก ๆ นี้ เพื่อทำให้ได้แบตเตอรี่ตะกั่วกรดไว้ใช้งานในอุตสาหกรรมต่าง ๆ ได้แก่ รถยนต์  , ระบบไฟฟ้าสำรอง , รถไฟฟ้า , ระบบโทรคมนาคม , รถไฟ , เรือดำน้ำ และ อื่น ๆ มากมาย ที่อยู่ในชีวิตประจำวันของเรา

สำหรับอุตสาหกรรมรถยนต์นั้น เรามีการใช้แบตเตอรี่ตะกั่วกรด โดยมีวัตถุประสงค์หลัก เพื่อสตาร์ทเครื่องยนต์   ซึ่งมีวิวัฒนาการ เป็นลำดับดังนี้

 ยุคแรกเริ่ม ของแบตเตอรี่ตะกั่วกรด
ยุคแรกเริ่ม แบตเตอรี่ตะกั่วกรด เป็นแบตเตอรี่ประเภทเติมน้ำกรด ก่อนใช้งาน ( Conventional Battery )  แบตเตอรี่ประเภทนี้ จะมีการใช้แผ่นธาตุ (Plate)   ที่ใช้โครงแผ่นธาตุ (Grid ) ผลิตจากโลหะผสม ที่ได้จาก ตะกั่ว (Lead ) + แร่พลวง (Antimony) + ดีบุก (Tin) ทั้งแผ่นธาตุบวก และ ลบ  แบตเตอรี่ชนิดนี้แผ่นธาตุจะผลิตจากกระบวนการหล่อในแม่พิมพ์ (Casting) ทำให้ได้แผ่นธาตุที่มีความหนา และ มีน้ำหนักมาก 

โดยมีข้อเสีย คือ เมื่อเวลาใช้งาน จะเกิดปฏิกิริยาเคมีไฟฟ้า ที่ทำแบตเตอรี่เกิดการความร้อน (Thermal Run Aways) ได้ง่าย  และ มีการสูญเสียไอน้ำกรด (Gassing )  มาก ทำให้เวลาใช้งาน แบตเตอรี่จะต้องการเติมน้ำกลั่นบ่อยครั้งเช่นทุก ๆ เดือน หรือ ทุกๆ สัปดาห์  ขึ้นอยู่กับการใช้งาน  และ ยังเป็นต้นเหตุทำให้เกิดการกัดกร่อนของรถยนต์ เนื่องจากน้ำกรดล้น และ ระเหยออกมากัดกร่อนตัวถังรถยนต์จนเป็นสนิม

 
ยุคของแบตเตอรี่ Low Maintenance
ต่อมาเมื่อผู้ใช้งาน มีความต้องการแบตเตอรี่ที่มีประสิทธิภาพที่ดีมากขึ้น และ ลดการสูญเสียไอน้ำกรด  จึงมีการพัฒนากระบวนการผลิตแผ่นธาตุ และ ปรับปรุงส่วนผสมของโลหะที่ใช้ทำโครงแผ่นธาตุ ลดการใช้พลวงลง เรียกโครงแผ่นธาตุแบบนี้ว่า Low Antimony Grid   ทำให้ได้แบตเตอรี่ตะกั่วกรด ที่มีการสูญเสียไอน้ำกรดระหว่างใช้งานน้อยลง  ผู้ผลิตแบตเตอรี่จึงเรียกแบตเตอรี่ประเภทนี้ว่า  Low Maintenance Battery (แบตเตอรี่ บำรุงรักษาน้อย)

ข้อดีของ Low Maintenance Battery
แบตเตอรี่เกิดความร้อนน้อยลง (ลดปัญหา Thermal Run Away)
แบตเตอรี่สูญเสียไอน้ำน้อยลง (ลดการเกิด Gassing)
ทำให้ยืดระยะเวลาในการเติมน้ำกลั่นได้นานขึ้น
 
ยุคของแบตเตอรี่ไฮบริด (Hybrid Battery)
และยุคต่อมา ผู้ผลิตแบตเตอรี่มีความต้องการในการพัฒนากระบวนการผลิตให้เร็วมากยิ่งขึ้น และผู้ขายไม่ต้องการเติมน้ำกรดและชาร์จก่อนขาย  ทำให้เกิดการพัฒนาแบตเตอรี่ โดยการใช้โครงแผ่นธาตุบวก แบบ Low Antimony  และโครงแผ่นธาตุลบที่ใช้แร่แคลเซียม(Lead Calcium Alloy)  เป็นส่วนผสมแทนแร่พลวง ผลที่ได้คือ แบตเตอรี่ชนิดไฮบริด (Hybrid Battery)

ข้อดีของแบตเตอรี่ไฮบริด (Hybrid Battery)
แบตเตอรี่มีเก็บประจุไฟฟ้าได้นานขึ้น (Low Self Discharge )
แบตเตอรี่สูญเสียไอน้ำน้อยลง (ลดการเกิด Gassing)
แบตเตอรี่เกิดความร้อนน้อยลง (ลดการเกิด Thermal Run Away)
ผู้ผลิตสามารถเติมน้ำกรดจากโรงงาน ได้เลย ผู้ขายจึงไม่ต้องเติมน้ำกรดและชาร์จก่อนการขาย
 
ยุคของแบตเตอรี่ SMF (Seal Maintenance Free Battery)
ต่อมาผู้ผลิตแบตเตอรี่ต้องการผลิตแบตเตอรี่ให้มีประสิทธิภาพสูงมากขึ้น และ เร็วมากยิ่งขึ้น จึงได้ทำให้อุตสาหกรรมแบตเตอรี่ได้พัฒนากระบวนการผลิตโครงแผ่นธาตุแบบใหม่ โดย

เปลี่ยนกระบวนการผลิตจากการหล่อ เป็นการรีดแผ่น  (Expansion Grid)
เปลี่ยนส่วนผสมของโลหะจากพลวงเป็น แคลเซียม และ ดีบุก  (Lead Calcium Tin  Alloy) ทั้งโครงแผ่นธาตุบวก และ ลบ
ผลที่เกิดขึ้นจากกระบวนการพัฒนานี้ ทำให้ได้แบตเตอรี่ ที่มีคุณสมบัติ

สูญเสียไอน้ำกรดน้อยมาก ( Ultra Low Gassing )
เกิดความร้อนน้อยมาก ( Ultra Low Thermal Run Away)
เก็บประจุไฟฟ้าได้นานมาก (Ultra Low Self Discharge)
จึงทำให้ผู้ผลิตแบตเตอรี่สามารถผลิตแบตเตอรี่ที่ไม่ต้องเติมน้ำกลั่นตลอดอายุการใช้งาน  โดยการออกแบบฝาแบตเตอรี่ แบบปิดสนิท ซึ่งเรียกว่า SMF Battery (Seal Maintenance Free Battery)

แต่ในปัจจุบันค่ายรถยนต์ต่างๆ มีการพัฒนารถยนต์ที่ลดการเกิดมลพิษจากไอเสียรถยนต์ ทำให้แบตเตอรี่จึงต้องมีการพัฒนาให้รองรับรถยนต์ ที่มีระบบไดชาร์จอัฉริยะ  (Alternator Management System) และระบบ ISS  (Intelligent Start Stop System)
 
สรุป
จากที่อธิบายมาทั้งหมดนี้ เป็นวิวัฒนาการของแบตเตอรี่ตะกั่วกรด โดยมุ่งไปที่การพัฒนาเพียงส่วนของโครงแผ่นธาตุ  เพียงอย่างเดียว ทำให้แบตเตอรี่พัฒนาจากยุคต้องเติมน้ำกรดและชาร์จก่อนใช้งาน (Conventional)  มาสู่ยุคแบตเตอรี่ไม่ต้องเติมน้ำกรด และ น้ำกลั่นตลอดอายุใช้งาน (SMF) 

------

แบตเตอรี่ที่ใช้ในรถยนต์ แบ่งออกเป็น 2ชนิด ได้แก่

1.แบเตอรี่แบบเปียก จะแบ่งย่อยอีกเป็น 2 แบบ คือ

   1.1.แบบที่ต้องเติมน้ำกลั่นบ่อยๆ (ประมาณสัปดาห์ละ 1 คั้ง) มีอายุการใช้งานประมาณ 1.5-2 ปี แต่ถ้าดูแลรักษาดีอาจใช้งานได้ถึง 3 ปี

   1.2.แบบที่ไม่ต้องดูแลน้ำกลั่น (Maintenance Free) โดยความเป็นจริงที่ต้องเติมน้ำกลั่น แต่ระยะเวลาอาจนานกว่า

2.แบตเตอรี่แบบแห้ง มีอายุการใช้งานประมาณ 5 ปีขึ้นไป 

---------------

โครงสร้างของแบตเตอรี่ ประกอบไปด้วย
 

1.       ฐานและเปลือกหม้อแบตเตอรี่

2.       แผ่นธาตุบวกและแผ่นธาตุลบ

3.       แผ่นกั้นและใยแก้ว

4.       สะพานรวมแผ่นธาตุ

5.       ขั้วต่อเซล (บวกขลบ)

6.       ฝาครอบปิดแผ่นเซล

7.       ขั้วบวก

8.       ขั้วลบ

9.       ฝาจุกตรวจขเติมน้ำกลั่น

10.     น้ำยา (น้ำกรดแบตเตอรี่)

 
ข้อควรระวัง

        การถอด และ ต่อพ่วงแบตเตอรี่จะต้องปฏิบัติอย่างถูกต้อง มิฉะนั้นอาจจะทำให้แบตเตอรี่ช็อต ระเบิด และเกิดความเสียหาย กับอุปกรณ์ต่างๆภายในรถได้

       การถอดแบตเตอรี่ จะต้องถอดขั้วลบออกก่อน แล้วจึงถอดขั้วบวกออกภายหลัง

       การใส่แบตเตอรี่ จะต้องใส่ขั้วบวกก่อนแล้วขันให้แน่นแล้วจึงใส่ขั้วลบแล้วขันให้แน่นภายหลัง

การต่อพ่วงแบตเตอรี่รถยนต์

       กรณีที่ไฟอ่อน หรือไฟหมด ต้องนำรถยนต์ที่มีไฟเต็มต่อสายพ่วงบวกเข้าขั้วบวกแบตเตอรี่ กับขั้วบวกแบตเตอรี่รถยนต์ คันที่ไฟอ่อน แล้วนำสายพ่วงลบต่อขั้วลบแบตเตอรี่ของรถยนต์ คันที่ไฟเต็มเข้ากับแชสซีส์ หรือตัวถังของรถยนต์ที่ไฟอ่อน สตาร์ทเครื่องยนต์ตัวรถยนต์ คันที่ไฟเสีย เร่งเครื่องประมาณ 1,000-2,000 รอบ /นาที แล้วจึงสตาร์ทรถยนต์คันที่แบตเตอรี่ไฟอ่อน หลังจากเครื่องยนต์สตาร์ทติดแล้ว ให้นำสายพ่วงออกโดยย้อนลำดับการเชื่อมต่อ

หมายเหตุ :  รถที่จะนำมาพ่วงสตาร์ทจะต้องมีไฟแบตเตอรี่เพียงพอ และจะต้องมีค่าแรงเคลื่อน โวลต์ (V)ที่เท่ากัน
--------------


関連コンテンツ
「レアアース:現代産業のビタミン :SO OK TRADING とレアアースのビジネス機会」
レアアース元素(REEs):現代産業のビタミン 戦略資源からグローバルビジネス機会へ。レアアースは、EV・バッテリー・防衛システム・医療機器など、クリーンエネルギーと先端技術を支える「心臓部」です。
16 Jan 2026
リードブルオン & サーキュラーエコノミー – リサイクル鉛で持続可能な未来へ : 産業の未来を支える一次エネルギー BY SO OK TRADING
リードブルオン – 産業界を支える一次エネルギー 鉛インゴット(Lead Bullion)は、特有の性質を持つ重要な金属原料です。高密度でX線や放射線を効果的に遮蔽でき、柔らかく加工しやすく、低融点で製造コストを削減でき、さらに100%リサイクル可能であるため、バッテリー産業、放射線防護、建設、合金製造など多様な分野で不可欠な存在となっています。 2026年の市場動向として、世界需要は増加が見込まれ、価格は2,050〜2,200 USD/MTの範囲で安定または上昇すると予測されています。リサイクル比率もESG基準に沿ってさらに高まり、世界的な重要課題となっています。 SO OK TRADINGは、高品質な鉛インゴットを安定供給し、未来のエネルギーと産業の発展を力強く支援していきます。
16 Jan 2026
2026年鉄鋼業界の展望:緩やかな回復と価格上昇の可能性 —— SO OK TRADINGより
2026年鉄鋼業界の展望:緩やかな回復と価格上昇の可能性 2026年は、鉄鋼業界にとって重要な転換点となります。2025年の底を経て、市場は「新たな均衡」に入りつつあり、需要は回復し、価格も安定的に上昇する見込みです。 世界全体では、鉄鋼需要が 1.3%増加し、1,773百万トン に達すると予測されています。インドが主な牽引役となり、道路・鉄道・エネルギーなどのインフラ投資により 9%の成長 が期待されています。米国と欧州も、金利引き下げやクリーンエネルギー投資、自動車産業の回復により堅実に成長し、米国は 1.8%増、欧州は 3.2%増 と見込まれています。中国は不動産分野の低迷が続くものの、需要減少は -1% にとどまり、インフラ投資や鉄鋼製品の輸出が全体を支えています。さらに、東南アジアや中東などの新興国でもインフラ・エネルギー投資が進み、需要の分散的な拡大が期待されています。 価格面では、鉄筋(Rebar)の平均価格が 16,000〜17,000バーツ/トン(約450〜530 USD/MT) と予測され、安定的に上昇する可能性があります。中国からの過剰供給や米欧の貿易障壁による圧力は残るものの、市場はより安定した「新たな均衡」に移行しています。 タイ国内では、建設や自動車産業の回復に伴い需要が緩やかに増加すると見込まれていますが、中国からの安価な鉄鋼が市場の約50%を占める可能性があり、国内メーカーは依然として大きな圧力に直面しています。そのため、タイの鉄鋼事業者は、付加価値の高い特殊製品の開発や品質基準の向上を通じて、プレミアム市場や特定の輸出市場(ASEAN、中東、アフリカ)を開拓する必要があります。 SO OK Trading:タイ鉄鋼を世界市場へつなぐパートナー SO OK Tradingは、タイの鉄鋼事業者を支援するための包括的なソリューションを提供しています。 - 広範なパートナーネットワークと鉄道・海運・陸路を組み合わせた物流基盤により、タイの生産者と中国・東アジアのバイヤーを直接結びつけます。 - 市場分析や価格動向の予測、指数連動型の価格設定に関するアドバイスを提供し、価格変動リスクを軽減します。 - 契約の安定化、輸出関連の書類・基準・認証の管理をサポートし、安心して取引できる環境を整えます。 - 中国市場で需要の高い特殊鋼材に合わせた技術的・商業的な提案を行い、顧客ニーズに応えます。 SO OK Tradingは単なる輸出業者ではなく、タイの鉄鋼事業者が世界市場で安定的かつ持続的に競争できるよう支援する 信頼できるビジネスパートナー です。
15 Jan 2026
This website uses cookies for best user experience, to find out more you can go to our Privacy Policy そして Cookies Policy
Compare product
0/4
すべて削除
比較する
Powered By MakeWebEasy Logo MakeWebEasy